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E. INTRODUCTION

Electromagnetic scattering from a moving body generally is a very
difficult problem to solve. Due to the motion of the scatterer, the con-
stitutive parameters, u, € and o are not only functions of position but
also functions of time, thus introducing modulation in the scattered
fields. To make things worse, the boundary conditions for a moving body
are much more complicated than those encountered in problems involving
stationary bodies only [1]. These are probably the main roadblocks to
obtaining the solutions of the scattering problems involving moving bodies.

However, in some cases, approximate solutions of the scattering
problems involving moving bodies can be obtained. In this report we
shall discuss the backscatter of a large rotating conducting cylinder.
Approximate solutions of the backscatter will be obtained using the quasi-
stationary method. The investigation of this problem stems from the cur-
rent interest in the DADAM phenomena which involve the identification of
moving vehicles based on the characteristic modulations that they impose
on their radar returns.

II.  FORMULATION AND NUMERICAL SOLUTIONS

An infinitely long conducting cylinder is rotating at an angular
velocity a about its axis. A plane wave is incident normally upon the
cylinder. Due to the rotation of the cylinder, the constitutive para-
meters are then periodic functions of time with period T. For a cylinder
with arbitrary cross-section, T=2n/a. However, for an orthogonal polygon-
cylinder, T=2n/Na, where N is the number of sides of the polygon. Assume
that 1/T is much smaller than the frequency of the incident wave. Then
the backscatter is both amplitude and phase modulated which can be written
as

juat
A (1)

where wy is the incident angular frequency and £(t) is a complex function
of t with period T. Because of the assumption, 2m/T<<wy, the negative
frequency components of the Fourier transform of Eg Wil? be negligible.
Therefore Eg can be considered as an analytic signal.

An exact solution of z(t) can be obtained in two ways. The first
is to solve the scattering problem in the time domain using boundary
conditions for moving bodies. The second involves transformations from
the laboratory frame to a non-inertial frame which is corotating with
the cylinder. Both methods are very tedious and solutions difficult to
obtain. However, under the assumptions that wy>>2n/T and that the linear
velocity of the cylinder (v = aa, a = the largest radius) is much smaller
than the velocity of 1ight in vacuum, an approximate solution of 3(t)
can be much easily obtained using the quasi-stationary method. Using this




method, the backscatter T(t) at each time t is obtained as if the cylin-
der were stationary. The ordinary frequency domain techniques and the
boundary conditions for stationary bodies can then be applied to solve
the problem. The inequalities wy>>2n/T and c>>aa are easily satisfied
with high incident frequency and low rotating velocity. Thus the quasi-
stationary method can be employed in many practical situations.

In applying the quasi-stationary method, GTD (geometrical theory
of diffraction) techniques can be employed for solving (t) from a large
conducting cylinder. In the following, we shall first briefly review
the GTD techniques pertinent to this problem. For a more detailed form-
ulation readers are referred to a paper by Wang* [2].

As shown in Figure 1, a conducting convex cylinder is illuminated
by a line source. The cylinder is modeled as a polygonal cylinder with
N flat faces. The line source illuminates the polygonal cylinder giving

LINE SOURCE
®

Figure 1. The self-consistent representation of the

surface waves traveling on the triangular
cylinder.

*The authors wish to thank Dr. N Wang for the use of hi
LOr.o N is co
program and the reproduction of Figures 1 and 2 in this repg?gfer
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rise to reflected fields and edge-diffracted fields, which consist of
singly- and multiply-diffracted fields. The multiply-diffracted rays
are due to those surface waves traveling, at least once, along the sur-
face of the polygonal cylinder and then diffracting from the edges of
the polygon. The surface waves on each side of the polygon are conveni-
ently combined into two such waves traveling in opposite directions.
Hence there are totally 2N surface waves on a polygonal cylinder with N
sides. The amplitudes of these surface waves need be solved first. We
shall use the triangular cylinder of Figure 1 as an example to set up
equations for solving these amplitudes.

In Figure 1 the C; are the unknown amplitudes of the surface waves
on the polygon faces. +he surface wave field is defined as

(o iy B (2)
U(p) = C; ’

L]
where k = w_/c, and o is the distance from the caustic of the surface

wave to the field point. This field equation is not valid at the caustic.
The boundary condition at the corners may be expressed as follows:

at corner A,

Gy C3TcatCaRpatVy s (3)

Ce = C4Tpa*C3RcAtVg , (4)

at corner B,

Cp = C1Tag*CsReptV2 , (5)

Cq = C5Tca*CiRag*V4 , (6)
at corner C,

C3 = C2Tpc+CeRACHV3 , (7)

Cs = CeTac*C2RBc*Vs , (8)

Equations (3) - (8) can be written in matrix form,
[z1(c) = (v) , (9)
where [Z] is the coupling matrix and (V) is the excitation column.

The coupling matrix [Z] is unsymmetric. Its elements specify the
interactions among the surface waves. The diagonal elements are Zj;=1.
The other elements are 0, Ty, or Ryy. The transmission coefficient Ty,
and the reflection coefficient Ry are given by




e Ikexy

Toy = 5 L p (360°-0,,0°,90°) , 10
o = s (10)
Xy
-Jkey
- y o o o
e ‘? D (0%.0%,80°) (11)
Yexy h

where Py is the distance between the corners X and Y, o, is the wedge
angle f6% corner Y and D (650'5Bg) is the scalar wedge d¥ffraction coef-

ficient given by Kouyoumjian and Pathak [3].

The elements of the excitation column (V) relate the source excita-
tions to the surface waves on the polygon surfaces. The typical element
of (V) is given by

-Jkpgy
Vo = 2= Dﬁ(o°,¢',90°) - (12)
Psx

where pqy is the distance between the source and corner X. However,
when a corner is not directly illuminated by the source, the excitation
element associated with that corner is 0. Furthermore, for the TM case,
the diffraction coefficient Dg in Equation (12) is identically zero and
should be replaced by its normal derivative [2].

From the matrix equation, Equation (9), we obtain the amplitudes
of the surface waves on the polygon surfaces. The scattered field at an
observation point P is equal to the sum of the fields associated with
all the rays emanating from the cylinder and passing through P:

U(P) = } Up(P) ; (13)
rays

which includes the reflected field and the diffracted field. Referring
to Figure 2, the reflected field associated with the reflected ray S'P
emanating from the image S' is given as

=5Kp oy
IR R

, (14)

where the positive sign is for the Neumann (hard) boundary condition
associated with the magnetic line source, and the negative sign 1s.for
the Dirichlet (soft) boundary condition associated with the electric

R S e o




Figure 2. Direct ray §$, reflected ray §Tﬁ, singly-
diffracted ray SAR, and surface-wave
diffracted ray ABP.

e ¥
line source. The singly-diffracted field associated with the ray SAP

is given by

-Jkesa ~Jkepp
d e e O
U e e (¢' "t"sgo ) s (]5)
AP S\TA*TA Y
y YPSA h °Ap

and the surface-wave-diffracted field associated the surface wave G is
given by

'JkpAB 'jkpo
sd e ]_ o oy €
B e 0 B 5 Dilep,0°,90°) S : (16)
ABP 1 i S\YB
°AB h Yegp

These fields, Equations (14), (15) and (16), exist only in their illumi-
nated regions. In the shadowed regions the corresponding fields vanish.
Summing the reflected fields, the singly-diffracted fields and the sur-
face-wave-diffracted fields, we then obtain the scattered field at P.
This field depends on the orientation of the polygonal cylinder. As the
cylinder rotates, the scattered field at P, i.e., U(P), then varies with




time. Therefore one may write U(P) as U(P,t) which is essentially equi-
valent to z(t) of Equation (1). A computer program is written for calcu-
lating U(P,t) (or z(t)).

In this investigation we are interested in studying the power den-
sity spectrum of the backscattered field. The power density spectrum of
the backscattered field can be easily calculated after z(t) of Equation
(1) as a function of t is obtained.

Because £(t) is a periodic function of t with period T, it can be
represented as a summation of its Fourier series,

F(m) eI2mt/T ) (17)

o~ 8

z(t) =

m:-oo

If |F(m)| & 0, for Im|>Ny/2, then Equation (17) can be adequately approx-
imated by

N./2-1 :
Bt} = F(m) ed2mmt/T
m=-N0/2
N.-1 _ 3 1
= OZ F(m_No/z) eJZ‘lT(m NO/Z)t/T ] (]8)
m=0
Let
o jnNot/T .
I(t) e = 5y (t) ; (19)
and
F(m-Ny/2) = Fy(m) 3 (20)
Then
> No-1 _ jemmt/T
z](t) = )} Fy(m)e . (21)
m=0
The inverse transform is
- Ng=1  _ s
Fi(m) = %" % 5 fe) ot iemus . (22)
0 tN,/T=0




 ———— e e ey e

Equation (22) can be solved using FFT programs.
From Equations (1) and (17), we have
=1 Fme ° : (23)

m==co

The power density spectrum of Equation (23) is defined by [4]

T - Jl(w-wg)-2mm/T]t |2
=1 [f'e - 0
S(w) = A \{'To mZ-w F(m) e dt
2 SR Sin[(w-wo)-an/T]To
i T;_ mz-m Fim) (w—wo)-ZHm/T
o Sin[(w-wo)-an'/T]To
m'Z-m F(m' (w—wo)—ZWm'/T i
As T
B e eyl
S(w) = 25 )  |[Flm)| 8[(w-w,)-2mm/T] : (25)
m:-oo

Thus the power density spectrum of the scattered field from a rotating
cylinder consists of spectral Tines located at

w = wgt2m/T = w tmNa m=0,+1,+2,+¢++ . (26)

Figures 3 to 10 show some power density spectra of the backscattered
fields from a large rotating conducting cylinder. The cross-section of
the cylinder is an N-sided orthogonal polygon. The spectra in Figures 3
and 4 are set to 0 dB at m=0 (w=wg). The dB values of the spectra in
other figures are then adjusted relative to these two spectral lines.
Examining these figures, we note several interesting features:

(1) The spectrum is symmetric about m=0. This property is due
to the symmetry possessed by the scattering orthogonal
polygon-cylinder. In the next section, we shall §how that
the power density spectrum of the backscattered f1e1q from
a rotating cylinder with an arbitrary cross-section in
general does not have this symmetry property.
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(2) The spectrum at m=0 is not always a maximum as evidenced
from Figures 7 and 8. This is probatly true when the length
of the polygon side exceeds several times of the incident
wavelength.

(3) As |m| increases, the spectrum usually decreases monotonically
and faster for the TM case. However, for the TE case the

SEectrum has a Tocal maximum around |m| & mD/Na. where wp is
the Doppler angular frequency given by

wp = Zn'zaa/ko = Zaawo/C ’ (27)

where a and ao are the largest radius and the largest linear
velocity of the cylinder, respectively. For example, in
Figure 4, wy20me and a local maximum occurs at |m| =

# wp/Na. The differences in the shapes of the spectra in
the TM and TE cases are probably due to the fact that in the
TM case, the induced current on the surface of the cy11nder
is perpendicular to the velocity of the cylinder, while in
the TE case the induced current has a component parallel to
the velocity.

(4) In all these figures, although not shown explicitly, the
spectrum drops sharply when ?ml > wn/Na.  In the next section,
we present an analytical evaluation of this phenomenon.

Figures 3-10 are the backscatter power density spectrum when a
plane wave is incident upon a rotating orthogonal polygon-cylinder.
They can be obtained by using a line current 104x0 away from the center
of the cylinder. At such a large distance, the curvature of the incident
wavefront at the cylinder is very small and the incident wave can be con-
sidered as a plane wave. However, when the line current is only 100x,
or less away from the center of the cylinder, the line current is in the
near-field zone of the cylinder and the wave incident upon the cylinder
is a cylindrical wave. The monostatic scattering power density spectra
when the line current is 25),, 501, and 100X, away from the center of the
cylinder are found to be essent1a]?y the same as those shown in Figures 3
to 10. Thus the power density spectra of a rotating cylinder can be ob-
tained using near-field measurements.

IIT. ANALYTICAL APPROACH

Numerical solutions reveal some interesting properties of the power
density spectrum of the backscattered field from a large rotating cylin-
der. In this section we shall investigate this problem analytically to
further substantiate the results established from numerical solutions
presented in the last section.

The vector potential due to a current source J(r,t) is given by

16




u

XE ) - Z%'Jf Irot') s(trar/c-t) dx'dy'dz'dt . {28)

where R = |r-r'| and & is a Dirac de1ta function. Taking the Fourier
transform of Equation (28),

M T A ] . '
A(rsw) = 75 JJ Uriptl) oJult'+R/C) quigyigziatt . (29)

In the two dimensional problem considered here, J(r',t') is independent

of z'. Therefore performing the integration over z' in Equation (29),
we obtain

A(prw) = :g If o' st Ho(z)(wR]/c)e'jwtl dx'dy'dt'  ,  (30)

where Ry = [p-p'| and H{2) is a Hankel function of the second kind. In
der1v1ng Equation (30), use has been made of the identity

- (2)
= -jkR He?) (kRy)
o o AR R HTE
f-m : R 4z’ = 4j i (31)

4
: = rpl 11271/2 : '
with R = [R1 + (z-2')°]/°. In the far field, Equation (30) becomes
u e-Jdn/8 o-juwo/c A e
S = -jw(t'-pep'/c)
A 5 = .0 IJ 3 l,tl Jw( ' '
(p,w) R (p ) e dx'dy'dt',

(32)

where o is a unit vector along o.

Now let J(p,t) be the induced current on the rotating cylinder.
Then from the vector potential we obtain the scattered electric and mag-

netic fields. In the TM case, the scattered electric field has only the
z-component.

_jwuoe'Jn/4 e-Jwp/c TR LA UMY
/sﬂmp/c J[ Jz(p 9t ) dx dy dt .
(33)

EZ(D,w) =

And in the TE case, the scattered magnetic field has only the z-component,

-jme-j"/4 e‘JwO/C

H (;’w) =
s c/8nwp/c

[[ G323, endutt!-be5/c)

dx'dy'dt' .
(34)

17




The factors outside the integrals in Equations (33) and (34) will be
designated as Ty and Tp, respectively.

We shall evaluate the integrations in Equations (33) and (34) by
transforming the coordinate system (p,t) to the coordinate system (p1,t])
which is corotating with the cylinder. The coordinate transformation is
governed by the following relations

X = X1 cosaty - yp sinat ,
Yy = Xj sinaty + yj cosaty s (35)
t=1

These equations can be derived by referring to Figure 11. The jacobian
of the transformation is unity. Therefore Equations (33) and (34) become

% L -ju(ti-o-pj/c)
E(5o0) = Ty [[ 9,5].t) e dxjdyldti (36)

and

2 o -ju(t]-1+p3/c)
H(5au) = Tg [[ G, e dxjdyjdt} . (37)

Figure 11. Transformation of coordinates.

18
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To proceed, we assume that the incident plane wave has the form
explJuwg(t- x/c)], which, if written in the corotating frame, becomes

exp{jwo[t]-(X]COSat] - y]sinat])/c]}

= expliuy[ty-pqcos(aty+ey)/c])

fo b mi Jk(aty+¢,)
<g 0t R G el L) (38)
2 1/2 . :
where py = x tan , and J, is a Bessel function.
In der1v1ng Equat1$n 38 ) use has beén made of the relation
er51n¢ = z Jk(x) ejk¢ 3 (39)

K==co

In view of Equation (38), the induced current J(pj,ty) can be written
as

o 2 A j[(wo+ka)t]+k¢]]
J(p],t]) v z J ak(P]) e . (40)
k:-oo
Thus using Equations (36), (37), (39) and (40), we obtain the backscat-
tered fields,

TR J(k+m)oq

E,(psw) = Ty J[ ; Al an (7] )Ipnlwoj/c)e i

; -3 lwmug-(k#m)alt]

‘e ojdoidejdty , (41)

= (k+m-1) axk(_})Jm(wpi/c)ej(k+m)¢i

[(38] -ilw-wg-(k+m+1)alt] -3 -j[m-wo-(k+m-])a]ti}
*qe e =€ e

pidojdedt; y (42)

where a, and a; are the components of a parallel and perpendicular to the
z-axis, respectively. 81 is the angle between a; and the positive x
axis. Substitute m=n-k into Equation (41) and m=n-k¥1 into Equation 142)
and carry out the integration over tis

19




L ® .-n jn¢i
Ez(p,w) = 2r Ty X J §(w-w.-na) e

JJ nE-w &
kZ-m an (0" )9y (wei/c) pqdoide; » (43)
_ = .-n s —
HZ(O,w) =2n Tg I[ nz—m = %”—'G(w-mo-na) * kz-w alk(pi)
Jl(n-1)07+81] JL(n+1)¢7-891]
{% 1, Jn-]_k(woi/c) e R
pidpid¢i . (44)

_ The integrations in Equations (43) and (44) are over the entire
circumference of the cylinder's cross-section. If the cross-section is
an orthogonal polygon of N sides, then Equation (43) can be simplified,

i . jnod N=1 it
E-(p,w) = 2m Ty f[ ¥l §(w-wy-na) e e

pes i=0
L 2u(eq) Iy (wnj/c) ojdojdei

T =0

(45)
where the integration is over one side of the polygon only. Since
N-1 ik e
Lo e = Z-m N Gn,mN s (46)

where 6; j is a Kronecker delta, therefore Equation (45) reduces to
S .-mN JmNo {

Ez(;,w) = 2nN TM JJ z J G(w-wo-mNa) e
m:-m

: a,, (p1) Jn_(woi/c) pidoidey .
(Lo 2nk(Pl) Jnglupi/e) ejdojei -

Similarly, Equation (44) reduces to

20
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o .-mN @
Hz(p,(u) = 27N TE JJ mz_w A %———— (5(:;)-ulo-mN(1) £ kz-w alk(p]‘)
[(GL(mN-1)4;+61]
s © Jmy-1-k(weg/c)
JL(mN+1)67-87] .

To solve Equations (47) and (48), we need to know the quantities
ay and a;. Unfortunately these quantities cannot be easily found except
for the case of a circular cylinder. For a circular cylinder with radius

a [5]

-2 1
Yoto™?1 Héz)(wop]/c)

auk(E}) = é(p]-a) s (49)

ay (o)) = 42 !
T mgerlE 2N 5 /c)

é(o]-a) ; (50)

which are independent of ¢7. Therefore E,(p,w) and Hz(o,w) vanish except
when m=0. This means that the fields sca%tered from a rotating circular
cylinder have the same frequency as the incident wave. It is conjectured
that for an orthogonal polygon-cylinder with a large number of sides, the
a, and a, will be close to those given in Equations (49) and (50) with
the constant radius a replaced by the variable radius a(¢]). Therefore

we shall substitute Equations (49) and (50) into Equations (47) and (48)
and obtain

= ® gmNej e Jpn ([wa(eq)/c]
E sw) =T N 6(w-w_ -mNa) doq
2 g J mz-w i o HEZ)[woa(¢i)/c] :
(51)
H, (750) chf Wlogate ]
sw) = w=w.~MNa)e 1
e “ ) nEw % mes Héz) lwgaleg)/cl
1 [ 3(83-07) .
" 25 1¢ JmN_]-k[wa(¢])/c]
-j(B1-47) ' .
e JmN+]—k[“’a(¢])/c] d¢’] s (52)

where we have lumped all the factors nonessential for calculating the
relative power density spectrum into T* and Tg. The spectrum consists
.i

of spectral lines. A single spectral Tine is proportional to the square
of

21
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/N JmNgy = Jon [(ws*mNa)a(¢q)/c]
Em = J N e mN(;) = ] d¢] (53)
-m/N k=-o Hy [woa(¢])/c]
or
. JH/N N JmN¢] E 1 o J [( N (
= e : * 4c0s¢q Iy [(w tmNa)a
LR ) TR L

- Jsing (w0+$ﬁ25§%¢])/c JmN-k[(“’o+mN")a(¢l)/C]}'d"’]

(54)

where we have assumed that the range of integration spans one side of
the polygon and that B]=n/2.

With Tow incident frequencies, wga(¢7)/c << 1. The arguments of
the Bessel and Hankel functions in Equations (53) and (54) are very small.
Thus the values of Ej and Hp decrease very fast as |m| increases. This
means that no significant spectrum spreading occurs with low incident
frequencies.

On the other hand, with high incident frequencies, wg >> mNo and
a(#y) > Ay. The arguments of the Bessel and Hankel functions in Equations
(53} and ?54) are in the order of wp/2a, where wp is the Doppler angular
frequency derined in Equation (27). If we plot the Bessel and the inverse
of the Hankel functions with fixed arguments against the orders, we note
that if the arguments are large, say > 10, then the values of the Bessel
and the inverse of the Hankel functions decrease very fast when the orders
become greater than the arguments. This is shown in Figures 12-15. Thus
with high incident frequencies, we can properly truncate the summations
in Equations (53) and (54) at *[wp/a],

E jW/N e Lop/al gon-kLwpa(e1)/c] i
= e 1] » 55
m -m/N k=-[wp/a] H;((Z)[woa(‘b])/c] :
T/N  jmNg Lup/n] .
Hm = J Ne (2)1
-m/N k=-[mD/a] Hk [woa(¢])/c]

; {cosm Inn-kLuoa(#7)/c]-jsing; %’;"f—(ﬁw—c JmN_k[woa(¢])/c]}d¢]

(56)
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Figure 12. Plots of [J,(10)| and |J,(50)].

It can be eas1]y shown from Equations (55) and (56) that in general
En # E and H This means that the spectrum is generally not
symmetr1c abou? A sufficient condition for the spectrum to be sym-
metric is a(¢7)= a( ¢1) for -n/N < ¢ < n/N, which can also be derived from
Equations (553 and (56). For an orthogonal polygon-cylinder, this con-
dition is certainly satlsfved Therefore the backscatter power density
spectrum of an orthogonal polygon-cylinder is symmetric about m=0.
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Figure 13. Plots of [i\2)(10)|™" ana [u{2)(s0)|.

It is also obvious from the properties of the Bessel and Hankel
functions with large arguments and large orders that the values of E,
and Hy are very small for |m| > wp/Na.

Table 1 shows the comparison of the power density spectra calcu-
lated using Equations (55) and (56) with those obtained in the last
section. The agreement is very good. This not only substantiates the
salient features of the backscatter power density spectrum of a large
rotating cylinder established in the last section, but also indicates
that the approximation of using Equations (49) and (50) for polygon-
cylinders is indeed a good approximation.
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TABLE 1

COMPARISON OF THE POWER DENSITY SPECTRA

a = Sxo, N =10 a= ]OAO. N=10

m|  TM(dB) TE(dB) m ™(dB) TE(db)

ol o | o o | o o] -4%0|-36] -3%|-34

1] -25(-26] -2.4/-25]] 1| -0.9]-0.8] -0.8]-0.7

21-9.9|-10.2] -e8l-06|] 2| -0.8]|-03] -0.7]-0.8

3| -17.7-18.5] -15.6| -16.1| | 3| - 4.5|-a.8] - 4.2| - 4.4

4| -28.7|-26.1 -19.4] -21.3| | 4| -9.7|-10.1] -8.9]- 9.4

5 | -31.1(-33.6 | -23.9(-24.3| | 5| -14.9| -15.6| -13.6/ -14.4

6 | -39.7|-45.1] -20.4|-24.4| | 6 | -19.6| -20.5] -17.5| -18.4

7| -62.7|-64.0 -40.0|-50.5| | 7 | -23.8-24.9( -20.2] -21.7

8 8 | -27.4|-28.9| -23.1| -24.9

9 | -30.8|-32.7 | -23.8] -26.3

l | acihg N2 10 | -38.1(-36.7] -26.0] -28.3
l m|  TM(dB) TE(dB) N | -37.7{-a1.4| -25.5| -28.3

0| +5%|+6.1 ) +601]+6.0] 12| -42.1]-48.3| -21.5] -29.7
| 1 | -3.9)-3.8] -3.4]|-35]|]|13]-55.9]-60.3] -31.5]-37.1

2 | -14.6(-14.7 | -13.0( -13.8

3 | -22.9]-23.1] -19.8]-20.8 a =51, N=20

4 | -29.6]-30.1] -22.8[-25.8 | [ m |  TM(dB) TE(dB)

5 | -36.0 |-37.3 | -25.8|-28.7 | | 0 |+ 3:6|+3.7] +3°8]|+3.8

6 | -46.0 | -48.6 || -23.2]-29.6 | | 1 | -13.0 [-13.0 ]| -11.4 | 121

7 -46.9 [ -72.8 | | 2 | -26.6 |-27.2 | -20.4 | -22.3

8 3| -43.1(-45.4 | -22.7]-24.4

* GTD solutions
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IV.  CONCLUSIONS

In this report, two methods for calculating the power density
spectra of the scattered fields from a large rotating conducting cylin-
der are presented. Results obtained using these two methods agree very

well with each other.

The backscatter power density spectrum of a rotating cylinder with
arbitrary cross section consists of discrete spectral lines. For an
orthogonal polygon-cylinder, the spectrum has the following interesting

features:

(1) It is symmetric about the incident angular frequency.

(2) For the TM case, the spectrum decreases monotonically.
However, for the TE case, it has local maxima around
wtwp, where wp is the Doppler angular frequency.

(3) The spectrum is essentially confined to a bandwidth
wo ~wp<w<wgtwp.

(4) The near-field spectrum is essentially the same as the
far-field spectrum.
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